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ABSTRACT
Cyber agility enables cyber systems to defend proactively against
sophisticated attacks by dynamically changing the system configu-
ration parameters (called mutable parameters) in order to deceive
adversaries from reaching their goals, disrupt the attack plans by
forcing them to change their adversarial behaviors, and/or deter-
ring them through prohibitively increasing the cost for attacks.
However, developing cyber agility such as moving target defense
techniques that are provable safe is a highly complex task that
requires significant time and expertise. Our goal is to address this
challenge by providing a framework for automating the creation of
configuration-based moving target techniques rapidly and safely.

In this paper, we present a cyber agility synthesis framework,
called MTDSynth, that contains a formal ontology, MTD policy
language, and MTD controller synthesis engine for implementing
configuration-based moving target defense techniques. The policy
language contains the agility specifications required to model the
MTD technique, such as sensors, mutation trigger, mutation pa-
rameters, mutation actions, and mutation constraints. Based on the
mutation constraints, the MTD controller synthesis engine provides
an MTD policy refinement implementation for SDN configuration
with provable properties using constraint satisfaction solvers. We
show several examples of MTD controller synthesis, including tem-
poral and spatial IP mutation, path mutation, detector mutation.

We developed our ActivSDN over OpenDaylight SDN controller
as an open programming environment to enable rapid and safe
development of MTD sense-making and decision-making actions.
Our implementation and evaluation experiments show not only
the feasibility of MTD policy refinement but also the insignificant
computational overhead of this refinement process.

CCS CONCEPTS
• Software and its engineering → Syntax; Semantics; • Net-
works→ Network manageability; Network privacy and anonymity;
Network management; Formal specifications.
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1 INTRODUCTION
Cyber defense techniques are mostly non-adaptive and take a long
time to detect and respond (hours, days even months). Moreover,
the defense techniques are rigid and do not provide agility capability
to mitigate threat proactively. In addition, the static and predictable
behavior of cyber systems from the attackers’ view creates a funda-
mental design vulnerability.

Cyber agility allows the cyber system to defend proactively
against a wide-scale vector of sophisticated attacks by dynami-
cally changing the system parameters and defense strategies in a
timely and economical fashion. It can provide robust defense by
deceiving attackers from reaching their goals, disrupting their plans
via changing adversarial behaviors, and deterring them through
prohibitively increasing the cost for attacks. However, developing
agility on cyber defense is a highly complex task, and it requires
significant effort in implementation and management in order to ob-
tain a safe and well-orchestrated MTD operations. As a result, few
MTD techniques are developed and validated on the real-life opera-
tional environment. To tackle this problem, we developed a cyber
agility framework, called MTDSynth, that allows MTD developers
for creating MTD control programs using a high-level cyber agility
policy language (HAPL) that provides the required constructs for
configuration-based MTD techniques including the following: (1)
mutation triggers which can be time-based or event-based using
user-defined network sensors, (2) MTD mutable system parameters
that will be dynamically changed based on the trigger, (3) configura-
tion parameters that dependent on the mutable parameters, (4) mu-
tation functions andmutation constraints that dictates the methodol-
ogy to compute and optimize the selection of new mutation value,
(5)mutation attributes that can be used to define the mutation scope
or domain. MTDSynth also provides a policy refinement engine to
synthesize the control program using Software-defined networking
(SDN)[2] controller and OpenFlow[20] configurations. As a result,
an MTD policy that is instrumented by user-defined function can
be automatically translated to a verified MTD control programs
that satisfy the constraints and properties defined in the agility
policy specification.

We used SDN as a platform for our MTD synthesis because it
provides a robust mechanism for dynamic and disruptive network
management. SDN provides programmatic ability into network con-
figurations while monitoring the whole network. The fundamental
facility achieved from SDN is to manage the network configuration
dynamically from a central controller for quick response and diag-
nosis. We developed an extensible API interface, called ActiveSDN,
over OpenDaylight SDN controller[21] to facilitate the synthesis
process. ActiveSDN supports the implementation of the sensors
and MTD actions defined in the HAPL at a high level without the
need to focus on any low-level OpenFlow configuration. In ad-
dition, ActiveSDN incorporates the Satisfiability Modulo Theory
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(SMT) constraints satisfiability solver [11], to optimize theMTD and
agility actions (selection of parameters and configurations values)
at real-time. We also show several examples of defining various
configuration-based MTD techniques using different parameters
such as temporal and spatial RHM[7], RRM [13], detector muta-
tion [27].

Thus, MTDSynth provides an open programming environment
to develop rapidly and safely sense-making and decision making
MTD actions to enable cyber agility for dynamic cyber defense
capabilities on ActiveSDN using OpenDaylight controller. We eval-
uated MTDSynth performance to assess the inherent computational
overhead due to the multi-layer synthesis process. We compared
the implementation of MTDSynt for the temporal RHM, spatial
RHM, and RRM with the native SMT implementation of these MTD
techniques. We found that for temporal RHM the average configu-
ration delay is very small (0.027s) and is unaffected by the network
size, and for spatial RHM and RRM the average configuration delay
is in the order of tens of milliseconds to hundreds of milliseconds,
which validates the feasibility and scalability of our framework.

The paper is organized as follows: Section 2 describe the
background and related works about common MTD techniques;
Section 3 presents the MTD policy language specification with
examples; Section 4 present the architecture of the MTDSynth
framework; Section 5 presents case studies about different types of
MTD techniques created by MTDSynth and their deployment into
the network; Section 6 describes the implementation of MTDSynth
and evaluate the performance of the framework against various
MTD techniques; Section 7 concludes our work with future aspects.

2 BACKGROUNDS AND RELATEDWORKS
In this paper we develop a general framework to instantiate any
MTD technique from the user defined specifications. To illustrate
our framework, we will use the following existing MTD techniques
as examples: (1) Temporal Random Host IP Mutation (Temporal
RHM) [7], (2) Spatial Random Host IP Mutation (Spatial RHM) [16],
(3) Random Route Mutation (RRM) [13], and (4) MTD to disrupting
stealthy bots [27].

Temporal RHM. Temporal RHM can turn end-hosts into un-
traceable moving targets by mutating their IP addresses in an in-
telligent and unpredictable fashion without sacrificing network
integrity, manageability or performance. In RHM, moving target
hosts are assigned virtual IP addresses that change randomly and
synchronously in a distributed fashion over time without disrupt-
ing active connections.

Spatial RHM. In spatial RHM, to reach each destination host
hj , each source host hi is associated with an ephemeral IP (eIP),
such that this eIP could be only used by hi to reach hj . The distri-
bution based on which these new mappings are determined can be
either uniform or deceptive (adversary-adaptive). The mutation uses
a strategy selection algorithm to determine the appropriate way at
any given time by analyzing the behavior of potential adversaries
in the network.

RandomRouteMutation (RRM). RRM allows for switch routes

in the network periodically or based on feedback from network
monitors. The main goal of RRM is to change the route between a
given source and destination address randomly to disable the attack
capabilities to launch an effective eavesdropping or DoS attacks on
the specific node or link in the route.

Disrupting Stealthy Bots. Disrupting Stealthy Bots is a MTD
approach for placing detectors across the network in a resource
constrained environment and dynamically and continuously chang-
ing the placement of detectors over time to defend against stealthy
bots.

The notion of mutable networks as a frequently randomized
changing of network addresses and responseswas initially proposed
in [4]. The idea was later extended as part of the MUTE network
which implemented the moving target through random address
hopping and random fingerprinting [5].

Existing IP mutation techniques include Dynamic Network Ad-
dress Translation (DYNAT) [18, 22, 23], Applications that Partici-
pate in their Own Defense (APOD) [8], Address Routing Gateway
(ARG) [25], Network Address Hopping (NAH) [26], Random Host
IP Mutation (RHM) [7], OpenFlow Random Host IP Mutation (OF-
RHM) [15], etc.

DYNAT is a technique developed to dynamically reassign IP
addresses to confuse any would-be adversaries sniffing the net-
work. They obfuscate the host identity information (IP and Port)
in TCP/IP packet headers by translating the identity information
with preestablished keys. BBN ran series of red-team tests to test
the effectiveness of DYNAT, while Sandia’s DYNAT report [22, 23]
examines many of the practical issues for DYNAT deployment.

Spatio-temporal Address Mutation (STORM) [16] can defend
against collaborative scanning worm and APT attacks. It can distort
attackers’ view of the network by causing the collected reconnais-
sance information to expire as adversaries transition from one host
to another or if they stay long enough in one location.

The work in [13] provided a general formalization for RRM with
various operational and QoS constraints. The route selection is
random and the new constraints can be added conveniently. In
practical networks, the number of disjoint paths is usually very
small [28], so the work in [13] analysed the MPE with non-disjoint
paths for RRM. The work in [12] presented a cyber deception frame-
work, called CONCEAL, as a composition of mutation, anonymity,
and diversity to maximize key deception objectives.

Developing cyber agility framework is a complex task because
of the automatic yet fast orchestration and management of network
configuration without breaking the mission integrity [9, 19]. Agility
framework requires comprehensive metrics for the safe deployment
of mitigation techniques [24].

3 AGILITY POLICY LANGUAGE
SPECIFICATION

The goal of MTDSynth is twofold: 1) an MTD language specifica-
tion and 2) an Engine that provides a programmable environment
for MTD policy creation leveraging the language. The language
specification will allow people to program MTD techniques in high-
level and the Engine will deploy that technique into the network
safely by orchestrating low-level network configurations (e.g., DNS
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Figure 1: Cyber Agility Policy Ontology for MTDSynth.

record, flow rules in switch tables) automatically. By safely, it means
that the deployment of MTD techniques doesn’t violate the mission
integrity as the automatic configuration of such sophisticated tech-
niques can jeopardize the reachability, liveness, and fairness of the
network communication. Therefore, MTDSynth provides minimum
effort in the development of MTD techniques and puts safeguard
onto it by considering the constraints. To define a fine grain MTD
specification, we need an ontology that can best describe the formal
syntax of MTD techniques creation. Therefore, we developed an
MTD ontology and an MTD language syntax around it.

3.1 MTD ontology
Figure 1 shows the ontology for the MTD techniques. The mutation
technique will be triggered by an event which can be temporal,
special, or behavioral event. The temporal or spatial events are time
oriented, meaning after a certain period, the mutation techniques
will be triggered or continue triggering. Behavioral events depend
on network behavior such as packet dropping, network scanning,
link flooding, etc. Based on the event, an agility specification will be
triggered. The agility specification of mutation depends on several
factors like mutation parameters such as the IP address of specific
hosts, configuration parameters like DNS-entry or switch flow ta-
bles, mutation functions like key-based or random distribution etc.
The mutation technique get performed by the mutation actions.
The event trigger time interval can initiate a periodic triggering of
the mutation techniques. The ontology enforces the safety of the
MTD techniques by considering the proper declaration of individual
constraints that requires for each mutation strategy.

3.2 MTD Language Specification
The specifications of MTD contain the following aspects as shown
in Figure 2:

MTD name N , is a string that can be used to define an MTD rule.
Using N, the same rule can be used later on. Besides, the naming
will help the user to keep track while creating multiple rules.

Agility Rule Π ::= N : E → Λ

MTD Name N ::= STRING

Mutation Event E ::= ∆ | α

Time Interval ∆ ::= NUMBER

Sensor Alert α ::= isHostScanning() | isLinkFlooding() | isBotDetected() |

checkUDPICMPPRate() | getAvailableBandwidth() |

checkNewComers() | checkElephantTCP() |

getRouteLength() | getCriticalLink() | getRouteRisk() |

getFlowStatistics() | getAllFlowRules() | getFlowRate()

Agility Spec. Λ ::=MUTATE p id OF {attr } USING f ON g BYm
WHILE c

Mutation Param. p ::= ROUTE | IP | STATE

Identifier id ::= [A − Z ]

Attribute attr ::= rattr | ipattr | sattr

Route Attr. rattr ::= id .src → IPAddress, id .dst → IPAddress

IP Attr. ipattr ::= id .I P → ⟨l ist of IPAddress⟩ | h

Host Name h ::= STRING

State Attr. sattr ::= id .I P → ⟨l ist of IPAddress⟩ | s

Activity Status s ::= UP | DOWN

Mutation Func. f ::= random(η, η) | key-based

Numeric η ::= NUMBER

Configuration g ::= r | r, g

Resource r ::= DNS-entry | switch-table | s

Mutation Action m ::= ipMutate | pathMutate | spatalMutation |

createShadow | reDirect | migrateService

Constraint Spec c ::= β | β ; c
Agility Const. β ::= α | γ | δ | δ op v

Mutation Const. γ ::= idt+1 op η | idt+1 op idt | attrt+1 op η

attrt+1 op attrt
Network Func. δ ::= includeSwitch() | excludeSwitch() | overlap() |

canReach() | getAllPaths() | getShortestPath() |

getMinDetectionProb() | getAttackUncertainity()

Value v ::= η | TRUE | FALSE

Operator op ::= > | < | ≤ | ≥ | = | , | ∩ | ∪ | ∀ | ∃ |

+ | − | × | /

IPAddress ::= (([0 − 9] |[1 − 9][0 − 9] |1[0 − 9]{2} |2[0 − 4][0 − 9] |
25[0 − 5])\.){3}([0 − 9] |[1 − 9][0 − 9] |1[0 − 9]{2}
|2[0 − 4][0 − 9] |25[0 − 5])

Figure 2: HAPL Syntax for MTDSynth.

Mutation Event E, is the trigger that initiates the mutation.
The triggering event can be time based or network system behavior
oriented. For example, the system admin can start IP mutation
to protect critical resources in a timely fashion. Therefore after a
certain period of time, the mutation technique will start and/or
repeat. Here the triggering event is time interval, ∆. However, the
admin may want to mutate a route if any of the links in the route



get flooded. In that case, the mutation triggering event is network
behavior oriented, which is if a link gets flooded.

Sensor Alert α , are the sensors in ActivesSDN that can be de-
ployed into the network to collect and measure any behavioral
facts, like host scanning, link flooding, bot detecting, critical links
finding, etc. The sensor primitives are implemented as functions so
that the user can directly use them to trigger MTD events or create
constraints for the safe deployment of MTD techniques.

Agility Specification Λ, defines the actions that are taken for
the agility technique. For example, the actions of IP mutation is
to mutate the IP address of the hosts in the valid address space,
and the actions of route mutation are to mutate the route of the
specific network flows. Therefore, the agility action specification
defines to start an MTD action (ipMutate, pathMutate etc.) on a
parameter (e.g., IP, route) using anmutation functionwhich requires
automated orchestration of network configuration fulfilling specific
constraints to maintain mission integrity.

Mutation Parameters p, the mutable parameter can be IP ad-
dress, route or state of an service that will be mutated over time.
The mutation parameter has attributes that provides granularity in
defining the exact mutation elements. For example, the IP param-
eter has attributes like host IP address and host name, the route
parameter has source and destination host, the state parameter has
status such as service is up or down, etc. So defining a parameter
also requires proper setting of its attributes.

Mutation Function f , bounds the mutation space and defines
how the mutation will happen. Providing a range in f will limit
the mutation space obtained from the solution of constraints in
that range. Besides, it will also used to choose the next mutation
parameter from that space. MTDSynth use two mutation function
from ActiveSDN, random and key-based. In random function, the
mutable parameter (e.g. IP address) will be chosen in a random
fashion. For key-based function, a proper hash key needs to be
provided for selecting the mutation parameter.

Configuration Parameters g, include the system parameters
that should be correctly configured for the mutation. Like the
DNS record entry, flow rules in the switch table, etc. Note that,
MTDSynth orchestrates all these low-level configurations automat-
ically.

Mutation Action m, are the primary functionality MTDSynth
uses for MTD that ActiveSDN provides. Based on an action, that
particular class of MTD will be executed, for example, ipMutate will
mutate the IP addresses, pathMutate will mutate the active route of
a given flow, migrateService will dynamically change the specified
services over time, etc. The user does not need to configure these
actions, rather just mention the name in the policy. MTDSynth
will handle the corresponding configuration of such actions. These
actions are complicated to configure by hand, therefore MTDSynth
will configure such actions atometically with safety.

Constraints Specification c ensures the safe deployment of
the agility rule so that the mission goal remains uninterrupted. For
example, while doing mutation (IP, route, or any other parameter),
the reachability of the network components must not be interpreted.
ActiveSDN provides a comprehensive constraint specification that
can be used to define fully qualified constraints to prohibit any con-
flict or misconfiguration which may occur while deploying MTD
rules into the network. This helps the user not to jeopardize the

mission integrity while providing maximum security. To define
a complete constraints specification, a series of constraints may
need to be executed sequentially. This includes sensors, mutation
parameter, the attributes of the parameter along with the primi-
tives ActiveSDN API provides. To define mutation constraints, the
current (t) attribute values will be used to determine the next (t+1)
mutation parameter attribute values in the constraints. Therefore,
a constraint specification is a combination of multiple network
constraints primitives, mutation parameters, mutation parameters
attributes, numerical or boolean values, that are combined with
arithmetic, relational, or logical operator. MTDSynth provides a
vast number of network constraints primitives from ActiveSDN
API; however, user can program any constraint they want with
the specification to fulfill the safety while deploying any MTD
techniques.

Network Function δ are the primitives ActiveSDN provides
to generate a complete constraint specification for different MTD
actions. IN appendix B figure 13, we provide a detailed description
of all constraints primitive. Note that, different primitives return
different values, for example, Boolean, numeric, or list of objects.
While comparing the output of such primitives, the type must be
matched, otherwise, semantic error may generate in MTD policy
parser module.

The primitives in MTDSynth such as sensors, MTD actions and
constraints implemented in ActiveSDN provides the user an MTD
programmable environment. Appendix B figures 12, 13, and 14 have
a comprehensive list of all these primitives.

3.3 MTD Policy Examples
In this section, we will describe how MTD policy can be created
using the HAPL Syntax from figure 2.

3.3.1 Route Mutation. Lets assume, user wants to mutate the route
between two hosts h1 and h2 if any of the links in the current route
of these hosts get flooded. The user has following constants: the
IP address for source host h1 is IP1 = 10.0.0.1, the IP address for
destination host h2 is IP2 = 10.0.0.2; deep packet inspection node =
s2. Assume there’s a critical link l(s6, s7) that is in the current route
h1 and h2 using where l can be a target that the user wants to avoid.
The agility policy for route mutation will be:

Path Muta t i on :
i s L i n k F l o o d i n g ( l , 0 . 2 ) →

MUTATE r o u t e R o f { R . s r c → I P1 , R . d s t → I P2 }
USING random ( 1 . . N) ON sw i t c h - t a b l e BY

pa thMuta t e
WHILE

(Rt ∩ Rt+1)/Rt ≥ 0.7 ;
i n c l u d e Sw i t c h (Rt+1, [s2] ) = TRUE ;
e x c l u d e Sw i t c h (Rt+1, [s6] ) = TRUE ;
g e t R o u t e L e n g t h (Rt+1 ) ≤ 5 ;
g e tA v a i l a b l e B an dw i d t h (Rt+1 ) > g e t F l owRa t e (

I P1 , I P2 )×1.2 ;
g e t R o u t e R i s k (Rt+1 ) ≤ 0 . 2 5

Rt is the current route and Rt+1 is the next mutated route chosen
by MTDSynth following the Agility Action. The isLinkFlooding(l, th)
method will check the packet drop rate in link l with the threshold
th and if the rate is greater than 20%, the mutation will be triggered.



ActiveSDN has a agility primitive called pathMutate for the route
mutation. The pathMutate will mutate the data path of a speci-
fied flow between source h1 and destination h2. The next mutated
route Rt+1 will be selected randomly from the available route space
between h1 and h2. The available route space will be selected by
solving the constrains mentioned in the WHILE loop. The only
configuration changes will be done in switch flow rule tables. The
framework will automatically orchestrate this flow rule updates in
corresponding switches. To choose the next mutated route Rt+1, the
following constraints will be executed sequentially. The constraint
overlap will find the common link ratio between the current route
Rt and the next chosen route Rt+1 by intersection, isIncludeSwitch
check whether the given route Rt contains the given switches (s2),
excludeSwitch ensures the given route must not contain the given
switches (s6), getRouteLength returns the links count in the next
chosen route which helps to define a maximum hop count in a
chosen route, getAvailableBandWidthmeasures the given link band-
width and the getFlowrate checks the number of packets any flow
(h1,h2) sends per second. The primitive getRouteRisk measures the
risk of a given route that may get attacked in a probabilistic way.
For example, assume that a route having n number of links, where
the probability of each link get attacked is pi where i ∈ n. Then the
risk that a route will get attacked is:

1 −
n∏
i=1

(1 − pi )

3.3.2 Spatial Mutation. Lets assume the user want to mutate the
communication IP between hostsh1,h2, ...hm , then the MTD policy
will be:

S p a t i a l I P Muta t i on :
i s H o s t S c a n n i n g ( 1 0 0 , 5 ) →

MUTATE I P P o f { P . I P → [h1 , h2 , . . . , hm ] }
USING random ( 1 . . N) ON DNS- en t ry , sw i t c h - t a b l e

BY s p a t i a lM u t a t i o n
WHILE

m×(m−1)
N ≤ 0.1 ;

∀i, j∈N Pt .hi , Pt+1 .hi

where N is the size of available address space,m is the number of
mutating hosts. m×(m−1)

N is the probability of two distinct muting
hosts will be assigned the same IP to reach the same destination
(collision probability). The equation ∀i, j ∈N Pt .hi , Pt+1.hi means
that the address assigned to a communication pair will be different
in two consecutive intervals.

3.3.3 Temporal IP Mutation. Lets assume, user wants to mutate
IP for hosts h1, h2, ... hn , where h1 can be a web server running as
www.xyz.com, h2 can be a FTP server and so on. The MTD policy
will be:

Tempora l I P Muta t i on :
t i m e I n t e r v a l = 5 s →

MUTATE I P P o f { P . I P → [h1 , h2 , . . . , hn ] }
USING random ( 1 . . N) ON DNS- en t ry , sw i t c h - t a b l e

BY i pMu ta t e
WHILE

∀i, j∈(1,N )Pt+1 .hi , Pt+1 .hj ;
∀i, j∈N Pt .hi , Pt+1 .hi

Here the first equation (after theWHILE statement) means that at
any fixed time the IP of any host in the set {h1,h2, ...hn } will be
distinct.

The second equation means that for any host in {h1, h2, ...hn },
the IP assigned to a host in an interval will be different from the
next interval.

3.3.4 MTD against Stealthy Bots. Lets assume the user want to
mutate the locations of the detecting service S , then the MTD policy
will be:

Bo t p a t t e r n d e t e c t i o n :
i s B o t d e t e c t e d ( s i g ) →

MUTATE s t a t e S o f { S . l o c a t i o n → [ I P1 , I P2 , . . . ,
I Pn ] }

USING random ( 1 . . N) ON s t a t u s
WHILE

for a l l t ,
∑N
i=1 St .I Pi < TB ;

m i nD e t e c t i o n P r o b ( S . l o c a t i o n ) > 0 . 9 ;
a t t a c k U n c e r t a i n t y ( S . l o c a t i o n ) > 0 . 8

Here service S has a set of detectors, and every detector is lo-
cated in a specific host. If the status of the detector is UP then it is
used for traffic sensing, and is DOWN when it is not used. Mutate
the location of detectors is equivalent to change the status of the
detectors. TB is the upper limit of the number of detectors at any
given time, and St .IPi is 1 if and only if a detector is located in the
ith host at time t . Function isDetectBot(sig) decides if the bot pattern
changes judged from the signature of bot traffic,minDetectionProb()
is the function to calculate the lower bound of the probability of
detecting bot traffic, given the current detector locations, and at-
tackUncertainty() is the function to measure the uncertainty created
against the bots with respect to the location of the detectors. The
details of the functions can be found in [27].

4 MTDSYNTH ARCHITECTURE
The MTDSynth framework provides 1) an agility language specifi-
cation HAPL to create agility control programs (agility policies for
MTD and cyber deception), 2) an open programming environment
to develop rapidly and safely sense-making and decision making
MTD actions to enable cyber agility and dynamic cyber defense ca-
pabilities on Software Defined Networking using OpenDaylight[21]
controller. Figure 3 show’s the architecture of MTDSynth. The
MTDSynth framework can be divided into three main components:
1) MTD policy specification interface, 2) MTD controller, and 3) Ac-
tiveSDN Engine. For scalability and rapid enhancement, MTDSynth
designed as a plugin play model so that any part of the framework
can be extended, modified or even replaced by adding other services
as an application that will run in a separate process. For example,
besides SMT solver, ASP[10] or ConfigChecker[6] can be used to
solve constraints satisfiability problems. The communication be-
tween all components in MTDSynth occurs through REST API
using JSON objects.

4.1 Interface
The MTDSynth framework provides an interface for MTD policy
creation leveraging the agility language specification in figure 2.
Authentic users can use the interface to generate agility policies
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Figure 3: MTD Controller Synthesis using MTDSynth.

for rapid deployment of MTD defense or deception with full con-
currency and safety. The policy creation interface provides an easy
description of how to follow the agility language specification to
create the correct MTD policy.

4.2 MTD Controller
The MTD controller in MTDSynth framework is the main orches-
trator that handles the end-to-end processing from MTD policy to
safe deployment of that policy in the network. It has three modules:
a parser, a policy translator and an engine.

MTD policy parser. The policy parser is the first step to pro-
cess the MTD policy created by the interface. It parses the given
policy according to the language specification, generates a parsing
tree and checks any syntax error. Then the parse tree is delivered to
the translator. If any error occurs while processing the policy, the
parser provides feedbacks to the interface; therefore, the user can
make necessary correction in the policy. The MTD policy parser
also measures the semantic correctness of the given policy from
the parse tree. It checks whether the policy uses any primitives,
sensors, mutation functions, or constraints that are not supported
by ActiveSDN. Moreover, it checks the correct use of arguments in
different primitives, type mismatch while comparing the output of
different primitive constrains with each other, etc. If the validation
fails, the reason behind the failure is returned to the interface as
feedback.

MTD policy translator. The translator module does the primary
task for the MTD controller, translate the MTD policy to a python
script with the ActiveSDN API. The MTDSynth framework expose
the primitives to create MTD policy from all the actions, sensors,
and constraints ActiveSDN engine has in the ActiveSDN API. The
translator generates a complete python script from the given policy
based on that API, therefore executing the script will deploy the
policy into the network through ActiveSDN engine. The translator
knows how to invoke each function the engine provides correctly
and by correct, it means the proper argument selection, providing
appropriate response to any notification, etc. The script can run as

a daemon server to communicate back and forth with the engine.
The reason behind that, some API will generate output that can
be used as input to another API (e.g., the output of getCriticalL-
ink(), l can be used as input in isLinkFlooding(l, ...)). Thankfully,
ActiveSDN engine is a multithreaded module that can handle multi-
ple request at a time from the translator program, which improves
the efficiency of MTDSynth framework in MTD policy deployment.
In section 5 we describe how ActiveSDN API used for MTD pol-
icy deployment inMTDSynth framework through several examples.

ActiveSDN engine. The ActiveSDN engine in MTDSynth frame-
work is built on top of an OpenDaylight SDN controller that pro-
vides the main programmable environment for generating safe
MTD policies. It leverages the SDN capability for rapid deployment
of critical MTD functions such as mutation or deception automati-
cally orchestrating low-level network configuration changes. Ac-
tiveSDN engine enhances the automation process by introducing
a rich set of primitives, the ActiveSDN API, which can be used di-
rectly for immediate deployment of defense and deception actions.
The engine has solvers like SMT, ASP, or other third-party solutions
like ConfigCheker to verify or resolve complex constraints. These
modules run as a standalone service in different process side by
side with the engine. The engine uses the OpenFlow protocol[20]
to communicate with the SDN network. Appendix B shows the API
list; however, the interested reader is referred to [14] for a complete
API list with a proper description of each primitive.

4.3 Workflow
ActiveSDN implements the MTD actions primitives and publishes
them into ActiveSDN API. The MTD controller in MTDSynth con-
figures these actions automatically based on the parameter and
constrains user enforces while creating MTD policies. Then using
the API, the MTD controller deploy the actions into the network. To
solve the constraints, the controller uses constraint primitives, sen-
sor or solvers from the engine. All these communications happen
using JSON object through REST API.

4.4 MTD Controller Synthesis
MTDSynth converts the agility specification to state diagrams,
and generate the satisfiable MTD parameters and configurations
through synthesis. Thus, we can realize an agility specification as
a state transition where each state represents a mutation action
and the transitions are based on environment actions including
adversary, configuration or time-based events. We define the MTD
parameters and the associated configuration changes as an MTD
scenario. The MTD scenario should be guaranteed to achieve its
goal despite any changes in the environment actions. In addition,
the high-level logic that governs the behavior of the MTD scenario
needs to be properly integrated with the MTD controller that regu-
lates the system configuration. Therefore, we can formalize anMTD
synthesis controller problem under verifiable guarantees as follows:
Agility Synthesis Controller Problem. Given the (1) Agility specifi-
cations for MTD techniques(parameters, actions, and constraints
expressed in Linear Temporal Logic (LTL) ), (2) Environment speci-
fications (attack model, topology and system configurations), the
task of the MTDSynth agility synthesizer and control system is
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to generate a sequence of configuration control signals that, by
construction, ensures that the system satisfies the model require-
ments for the MTD techniques. Figure 4 shows the framework of
MTDSynth controller synthesis.

5 CASE STUDY
In this section, we will discuss the details about the safe deploy-
ment of MTD policies into the network through rigorous examples.
We created a vast number of case studies to test MTDSynth for
deploying all existing MTD techniques that are mostly used. Also,
we created deception example using MTD techniques as well.

MTDSynth can do deception through spatial mutation to defend
critical resources in the network within a second. The policy men-
tioned in section 3.3.2 for spatial mutation can create deception
against scanning attack. In spatial mutation the IP address will
be mutated based on each host pair in the network. That means,
every host in the network will communicate with the list of mu-
table critical hosts through a different IP address. Meanwhile, any
direct communication with the mutable host can be redirected to
honeypot to deceive the attacker.

s1

h1

s2

h3

h4h2 h5

rIP vIP list

IPh1 IPh10, IPh11

rIP vIP list

IPh3 IPh6, IPh7

rIP vIP list

IPh4 IPh8, IPh9

Internet

Figure 5: Spatial mutation example.

5.1 Spatial Mutation
Following the MTD rule in section 3.3.2, the spatial mutation is
explained using a simple network having n = 5 hosts h1, h2..., h5

h1à (h3, IPh7), (h4, IPh8)
h3à (h4, IPh9), (h1, IPh11)
h4à (h3, IPh6), (h1, IPh10)

Table 1: DNS record for Spatial Mutation.

Flow s1 Internet s2 Flow

IPh1àIPh7 src=IPh1,dst=IPh7;set_dst:IPh3 IPh1àIPh3 src=IPh1,dst=IPh3;set_src:IPh11 IPh11àIPh3
IPh1ßIPh7 src=IPh3,dst=IPh1;set_src:IPh7 IPh1ßIPh3 src=IPh3,dst=IPh11;set_dst:IPh1 IPh11ßIPh3

1 2

3 4

Table 2: Flow rules for Spatial Mutation.

and two switches s1 and s2 shown in figure 5. From these hosts,
critical resources h1, h2 and h3 (number of mutable hosts,m = 3)
will be protected through spatial mutation, and the mutation IP
space must not have a collision (≤ 0.1). That means mutable host
list <h1, h2, h3> each having a distinct virtual IP addresses (vIP)
for every other mutable hosts in the network. Which concludes,
the vIP address space will containm × (m − 1) = 3 × (3 − 1) = 6
six distinct unused IP addresses (for example, h6 to h11), two for
each mutable host. Table 1 shows the DNS records and table 2
shows the flow rules for the spatial mutation. The framework will
dynamically configure the DNS record and flow rule modification
in corresponding switches. The first record in table 1 means, h1 will
reach host h3 and h4 with vIP h7 and h8 respectively. When h1 try
to communicate with h3, from the DNS record, it figures out the
destination IP is IPh7 for host h3. Now, the flow rule one for switch
s1 in table 2 states that, when real host h1 sends packets to host h7,
the flow will be delivered to real host h3 by setting the destination
IP IPh7 to IPh3 . When the packet arrives to the destination edge
switch s2, the rule two in switch s2 changes the source IP from
IPh1 to IPh11 . After receiving the packet, when destination host h3
looks in the DNS to resolve who is the sender IP IPh11 , it founds
host h1 as the sender. Rule three in switch s1 is for the reverse
flow when real host h3 reply to h1, the source IP will be changed
back to vIP IPh7 from real IP IPh3 . Therefore, h1 will be transparent
about the mutation and will assume that h3 actually serves in vIP
IPh7 . Rule four describes the same way as rule one, when host h3
communicates with host h1. From the DNS record host h3 obtains
the IP for h1 is IPh11 . Therefore, when host h3 sends a packet to
IPh11 , rule four changes the destination from IPh11 to IPh1 and
forwards. In appendix A, we showed two screenshots of the real
flow rules in the edge switches while spatial mutation was enabled.
Table 3 shows the API for spatial mutation.

Using spatial mutation, MTDSynth can create deception into the
network. In the API list, there is a mutation action called create-
Shadow() that enables deception while doing spatial IP mutation.
Figure 6 shows, by using proxy P, MTDSynth initiates deception to
protect host h4 in a network where an adversary may compromise
host h1 and targeting to reach critical server h7. To disrupt the ad-
versary lateral movement, MTDSynth will create a shadow network
(h31 −h36) based on the createShadow() action to confuse the adver-
sary by falsifying the overall network view. Moreover, MTDSynth
will deploy a generic rule (src=*,dst=IPh4 ,set_dst:IPproxy ) in all
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MTD Actions Parameters Descriptions

spatialMutation()

<h> List of h mutable host.

N Number of total host in the network.

<unused_range> Unused IP address list. (Also can be provided with start 
address and range limit.)

< mi > Mutable address per host = (n-1)*mi

when -1: Deactivate Special IP mutation.

0: One time mutation.

x: Time based mutation. Mutate IP after x seconds.

other-mutation:  For future use.

how Uniform Distribution, RandomDistribution: Select mutable 
address list for each mutable host from <unused_range>

Table 3: Spatial mutation API.

switches for any traffic destined to h4 forward to P. Therefore,
if adversary directly probes or try to reach h4, her traffic will be
redirected to P. In P, there are two rules, rule (1) (src=IPadversary ,
dst=IPh4 )→ (src=IPproxy , dst=IPhoneypot ). This will forward the
traffic to the honeypot in the cloud to generate a response for ad-
versary traffic. Rule (2) (src=IPhoneypot , dst=IPproxy )→(src=IPh4,
dst=IPadversary ) will send the reply traffic back to adversary de-
ceiving that the real host h4 is replying instead of honeypots. To
avoid traffic congestion on P, several instance of P can be deployed
on the network.

5.2 IP Mutation
IP mutation is an MTD action in MTDSynth. IP mutation mutates or
changed the source and/or destination IP address to hide the actu-
al/real IP address from the end-users, whereas the mutation itself is
transparent to them. Besides, the mutation doesn’t hamper any reg-
ular communication between hosts. The end host is unaware of the
mutation. IP mutation helps to defend against any scanning attack
for collecting network information for reconnaissances. Moreover,
the scanner gets detected immediately.

The ipMutate function has three configurable parameters: the list
of the real host IP address called rIP list that will get new mutated
virtual IP address vIP, the virtual IP address space as vIP list and
the mutation function f. For each rIP a vIP will be chossen from the
vIP list using the mutation function f. For a periodic IP mutation,
the event trigger need to be a time interval ∆, so that the rIP will
be mutated every ∆ seconds.
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Figure 7: IP Mutation Example.

Figure 7 shows an example of IP Mutation, where h1,h2,h3,h4
are the the hosts and s1, s2, ..., s6 are the switches. A web server
www.xyz.com is running in h3 and host h4 is a scanner. Assume
that, IP Mutation is activated with rIP as IPh3 , mutation function
f as a random function with a range (1, 10) means the the vIP list
contains a range of ten unused IP addresses (e.g., IPh5 to IPh14 ). If
the mutation time interval is ∆, then every ∆ seconds, rIP IPh3 will
get a random vIP form the vIP list. When IP Mutation starts, in
each mutation interval ActiveSDN installs three (the third rule is
optional) flow rules into corresponding edge switches, switches
that are near to the end hosts and update the DNS entry record.
Assume that, for such an interval, the random vIP is chosen as IPh8 ,
the corresponding rules are mentioned in figure 7.

Now,when hosth1 try to reachwebserverwww.xyz.com, it makes
a DNS query to obtain the IP address of the webserver in step 1. The
gateway switch s1 forwards this request to DNS server. The DNS
record is already get updated by the controller and instead of giving
the real IP address IPh3 , in step 2 the DNS server reply the vIP IPh8
as the DNS query request. After achieving the IP address of the web-
server, h1 sends packets setting the destination IP address as IPh8 ,
and flow rule (1) get matched in s1. Rule (1) sets the destination IP
from IPh8 to IPh3 and forward the packets. When the reply coming
back from the webserver to h1, rule (2) matched that changes back
the source IP from IPh3 to IPh8 . Hence, h1 and h3 continue their
communication withing being known to the mutation.

For scanner h4, it does not go to the DNS server to obtain IP
addresses for any host, rather try to probe by random IP address.
When h4 probe h3 by IP IPh3 directly, rule (3) matches, and the
flow gets dropped. Rule (3) denies any communication that directly
forwards to the destination IP address IPh3 . Note that, this rule is
optional in IP mutation.

5.3 Path Mutation
The path mutation is another MTD action that mutates the data
path based on a flow between the source and the destination host
without interrupting their regular communication. The existing
path will be removed, and a new path will be installed depending on
the mutation parameter. Path mutation is useful to overcome any
link flooding attacks such as the Crossfire Attacks [17] because this
technique confused the attacker to fix a specific critical link to flood.
Moreover, path mutation provides proactive defense ability into
the network restraining attacker permanently from link flooding.
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Figure 8: Path Mutation Example.

The path mutation API has two main parameters: the flow be-
tween a given source-destination IP addresses and a path profile.
The path profile is the constraint user made while creating the MTD
policy for path mutation. The path profile measures the overlap
between current and new mutable path, maximum path length,
minimum bandwidth, and the risk a path can have. Besides, any
specific switches can be included or excluded in the new path. Solv-
ing all of these constraints, path profile will generate a mutable
path space from where the next mutation path will be chosen. Fi-
nally, the event trigger defines how frequently the mutation will
happen. If it’s a time interval trigger, the path mutation will happen
periodically.

Figure 8 is an example of path mutation. Before the mutation
starts, source host h1 communicates with destination host h3, using
path (s1, s2, s5, s7, s8). Then after path mutation gets triggered, MTD
controler get a mutable path(s1, s3, s4, s6, s8) from path profile and
configure pathMutate API using rule (1) src = IPh1 , dst = IPh3
and path = (s1, s3, s4, s6, s8). This will install a new path for source
h1 to destination h3. After mutation, instead of using the old path
(s1, s2, s5, s7, s8), source h1 now communicates with destination h3
using the new mutated path (s1, s3, s4, s6, s8). This mutation is trans-
parent to all end hosts while the communication in between them
is uninterrupted.

Now the challenge in path mutation is to make uninterrupted
communication between the end hosts using the new path instead
of the old path. To do so we use Priority and Timeouts of the flow
entries. According to OpenFlow specification [20] there are two
fields available in the flow entries, 1) Flow Priority: matching prece-
dence of the flow entry, if any packet matches with two different
flow entries, the packet will follow the higher priority flow entry
and 2) Idle Timeout: if it is set, then the flow entry will be expired
(removed from the flow table) in the specified number of seconds if
any packets are not hitting the entry.

To ensure the uninterrupted property of path mutation, there are
two options: 1) explicitly call the removePath API that will delete
the old path, or 2) install every flow rules in pathMutation setting
the idle timeout with a specific number of seconds(usually the time
interval of the event trigger). In MTDSynth, for each mutation cycle,
to delete the previous path and install a new path, a new set of
flow rules get deployed to the switches with a given idle timeout
but higher flow priority from the previous flow rules. Therefore, if

the packets find two sets of matching flow rules but different flow
priorities, they follow the higher priority rules. The lower priority
flow rules become idle and get removed from the flow table after
timeout time, which means the old path get deleted.

6 IMPLEMENTATION AND EVALUATION
In this section we will describe how we developed MTDSynth
framework and show the effectiveness through rigorous testing.
We built ActiveSDN framework using OpenDaylight controller in
Java and use ActiveSDN engine and ActiveSDN API to make the
MTD policy syntheiszer: MTDSynth. We run MTDSynth in an iMac
machine having 32GB of RAM and 4 GHz Intel Core i7 processor
with macOS Mojave. We have a physical EdgeCore SDN Switch
running Pica8R PicOS with virtual SDN Open vSwitch(v1.3) net-
work running in different machines each having 32GB of RAM 8
CPUs in Ubuntu 16.04. We use Mininet[1] to create the virtual SDN
network and Vagrant[3] for managing dynamic creation of shadow
hosts in the network. We develop the MTD controller in python
and run it as a different process alongside with the MTDSynth. The
MTD controller provides web service for the Interface and commu-
nicates with the ActiveSDN engine controller through the REST
ActiveSDN API(northbound). ActiveSDN controller use OpenDay-
light to communicate with the network SDN switches following
OpenFlow protocol.

We evaluated the performance of MTDSynth for temporal RHM,
spatial RHM, and RRM. The most important factor for MTDSynth
is the mutation processing delay, which include the SMT solve
time and the configuration delay. Here the SMT solve time is unaf-
fected by the ActiveSDN implementation, so we compare the total
processing delay with the SMT solve time.

For temporal RHM, the controller needs to update the end-point
IP and related DNS. We found that the average configuration delay
is about 0.027s and this is unaffected by the network size. For spatial
RHM, Figure 9a shows the total processing delay and the SMT solve
time in a fixed network with 12 mutable hosts, with different num-
ber of shadow addresses. We can see that the difference between
SMT solve time and total processing delay is small, which means
the configuration delay is small (for example, about 0.24s for 20
shadows). For RRM, Figure 9b shows the total processing delay and
the SMT solve time in a network of 200 hosts with a flow of fixed
source and destination, and different required path length. We can
also see that the configuration delay is small (for example, about
0.07s for path length 4).

7 CONCLUSION
In this paper we present a framework called MTDSynth to develop
and deploy various MTD techniques fast and safely leveraging
the open programming capability of SDN. We introduce a formal
ontology and MTD language for agility. We show MTD language
examples for temporal and spatial RHM, RRM, detector mutation.
We build an open programming environment to develop rapidly and
safely sense-making and decision making MTD actions to enable
cyber agility and dynamic cyber defense capabilities in MTDSynth
on top of ActiveSDN using OpenDaylight controller. In our imple-
mentation and evaluation we show that the average configuration
delay for RHM and RRM is in the order of tens of milliseconds
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to hundreds of milliseconds, which validates the feasibility and
scalability of our framework.

For future work, we want to integrate dynamic deception ca-
pability, adaptive intrusion response mechanism into the existing
framework. We also want to add other classes of MTD techniques
that are learning based, independent from configuration manage-
ments.
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A APPENDIX: SPATIAL MUTATION FLOW RULES IN EDGE SWITCHES

Figure 10: Real flow rules in source edge switch (s1) for spatial mutation

Figure 11: Real flow rules in destination edge switch (s3) for spatial mutation

B APPENDIX: ACTIVESDN API

Type Primitive Descriptions Output

Sensors

isHostScanning(th, t) If any IP address sending SYN packets grater than the threshold th in a certain time 
window t, this function generates a true positive alarm.

boolean

isLinkFlooding(l, th) If the bandwidth consumed by the flows going to that link l,  is greater than the the 
bandwidth threshold th, this will generate a true positive alarm.

boolean

chekUDPICMPRate(f) Calculate the average rate of a specific flow f of all UDP and ICMP flows. <f>

checkElephantTCP(<f>) Calculate the percentage of large-size TCP traffic from a given flow list <f> .  <f>

getFlowStatistics(f) To get the complete information about a flow f such as: number of packets matched 
with f, bytes captured by f, time window for those packets, traffic type (ICMP, TCP, 
UDP) etc.

<flow
stat>

checkNewComers(<f>, t) Calculate the ratio of new IP source addresses from a given flow list <f> that has not 
been seen before recently in a given time window t.

<f>

getCriticalLinks() This function returns the critical links may generated in the topology based on the 
flow data path.

<links>

getAllFlowRules (s) This function retrieves all the flow rules available into a switch s. <f>

findNeighbors(s) Returns all the neighboring switches of the given switch s. <s>

findPortID(l, r) It returns the port number of the left switch l that is connected to right switch
r, if no link found, it returns -1.

numeric

detectBot(sig) If the signature of the examined packets satisfies the condition of bot traffic, return 
true.

boolean

Figure 12: ActiveSDN Sensors API



Type Primitive Descriptions Output

Constraints

isIncludeSwitch(Rt, <s>) Checks if route Rt contains all of the switches in the given switch list <s>. boolean

excludeSwitch(Rt, <s>) Checks if route Rt doesn't contains all of the switches in the given switch list 
<s>.

boolean

getRouteLength(Rt) Return the number of links in the given route Rt numeric

getAvailableBandWidth(Rt Checks the maximum bandwidth the given if route Rt has numeric

getFlowRate(s, d) Calculates the number of packets transmitted in between source s and 
destination d per second

numeric

overlap(Rt, Rt+1) Return the percentage of same links between two route Rt and Rt+1 number

getRouteRisk(Rt) Calculate the probabilistic risk that the given route Rt get attacked number

canReach(s, d) Using ConfigChecker, find all reachable sources or destinations to/from a 
specific source s and destination d.

<route_list>

checkUniqueIP(<ip>) Checks whether all the elements in the given IP list <ip> is unique or not. boolean

checkNonRepeate (<ip1>, <ip2>) Compare for all elements in the IP list <ip1> and <ip2> whether the i’th IP in 
<ip1> is different from the i’th IP in <ip2> . The length of these two list must 
be equal.

boolean

checkSpatialCollision(<ip1>, <ip2>) Find the collision probability that two distinct source using that same address 
to reach a destination.

numeric

getMinDetectionProb(loc) Calculate the lower bound of the probability of detecting bot traffic, given 
the current detector location loc.

numeric

getAttackUncertainity(loc) Measure the uncertainty created against the bots with respect to the 
location loc of the detectors.

numeric

getAllPaths(s, d) Calculates the all path source s and destination d. <route_list>

getShortestPath(s, d) Calculates the shortest path source s and destination d. <route_list>

Figure 13: ActiveSDN Constraints API

Type Action Name Descriptions

MTD Action

ipMutate Change specific/all IP addresses of network host dynamically to specific/random IP 
addresses based on event, IP Mutation parameter and time. (This function is used for 
randomizing real src/dst IP addresses to virtual src/dst IP addresses so that real IP is used for 
routing but end Hosts always uses virtual IP addresses to communicate.)

pathMutate Change the path frequently of active flow(s) to another satisfiable path based on event 
or time.

spatialMutation Change the destination IP addresses based on the source, that is, different source may have 
different IP to reach the same destination.

createShadow Create a decoy dynamically for host anonymity and diversity based on CONCEAL framework 
[MTD16, CNS 18].

reDirect This function change the IP destination to redirect to a decoy, or tunnel the packet to a proxy 
then send back to its original destination.

migrateService Change the path of active flow(s) between src and dst including service migration of dst host 
based on new path and new dst host address.

Figure 14: ActiveSDN MTD Actions API
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